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A B S T R A C T

A bioclimate model predicting the presence or absence of aspen, Populus tremuloides, in western USA

from climate variables was developed by using the Random Forests classification tree on Forest

Inventory data from about 118,000 permanent sample plots. A reasonably parsimonious model used

eight predictors to describe aspen’s climate profile. Classification errors averaged 4.5%, most of which

were errors of commission. The model was driven primarily by three variables: an annual dryness index,

the ratio of summer to annual precipitation, and an interaction of growing season precipitation with the

summer–winter temperature differential. Projecting the contemporary climate profile into the future

climate provided by three General Circulation Models and two scenarios (SRES A2 and either B1 or B2)

suggested that the area occupied by the profile should diminish rapidly over the course of the century, 6–

41% by the decade surrounding 2030, 40–75% for that surrounding 2060, and 46–94% for 2090. The

relevance of the climate profile to understanding climate-based responses is illustrated by relating

trends in climate to the recent incidence of sudden aspen dieback that has plagued portions of the aspen

distribution. Of the eight variables in the profile, four reached extreme values during 2000–2003, the

period immediately preceding the appearance of damage in aerial surveys.

� 2009 Published by Elsevier B.V.
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1. Introduction

The enormous transcontinental distribution of aspen (Populus

tremuloides) lies primarily within the Canadian boreal forest but
reaches its southern limits in the mountains of western USA
(Perala, 1991). Recent infirmity of aspen in this region (see Bartos,
2001; Worrall et al., 2008), the prairie provinces of Canada (Hogg
et al., 2002), and eastern Canada (Candau et al., 2002) has focused
attention on aspen’s ecological relationships (e.g., Frey et al., 2004)
with its biotic and abiotic environment.

For the latter half of the 20th century, aspen has been in a
period of general decline thought to result from the suppression
of wildfire, the absence of which has allowed plant succession to
proceed toward a culmination that ordinarily excludes aspen (Di
Orio et al., 2005; Bartos, 2001; Frey et al., 2004). Recent episodes
of aspen dieback have been superimposed on this general
decline. Dieback can be recognized by the suddenness of the
impact and by an epidemiology that begins with the death of
branch tips, death of mature trees, and expiration of entire
clones (Frey et al., 2004; Hogg et al., 2008). The process is
reviewed thoroughly by Frey et al. (2004), who discuss primary
and secondary causal effects, but these researchers and most
others (Candau et al., 2002; Hogg et al., 2005, 2008; Worrall
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et al., 2008) suspect that drought is the primary stimulus.
Because of the suddenness of the impact, the condition generally
is referred to as ‘sudden aspen decline’.

Other than a general recognition of the extremely broad range
of temperatures and precipitation under which aspen exists (see
Mueggler, 1988; Perala, 1991), much of what is known about
aspen–climate relationships stems from the work of Hogg (1994,
1997) who has related the transition of grasslands to forests
containing aspen in the prairie provinces in western Canada to the
excess of annual precipitation over potential evaporation. Because
global warming scenarios generally couple relatively large
increases in temperature with modest increases in precipitation,
potential impacts of a changing climate on aspen have become of
concern (Hogg and Hurdle, 1995; Hogg et al., 2002).

Our objectives are to (1) define aspen’s climate profile (sensu

Rehfeldt et al., 2006) with a bioclimatic model that predicts
presence or absence from climate variables, (2) assess the impacts
of global warming on the future distribution of the contemporary
profile, and (3) illustrate the utility of bioclimate models for
understanding climate-based responses such as sudden aspen
decline. Our analyses are concentrated in that portion of the aspen
distribution in the conterminous USA west of�1028 longitude. Any
mapped predictions for southwestern Canada are extrapolations
from USA data. For relating climate to dieback, we concentrate on
the U.S. Forest Service’s Rocky Mountain Region, 37–458 N latitude
and �1028 to �1078 longitude, where the outbreak has been best
documented (see Worrall et al., 2008).

mailto:jrehfeldt@gmail.com
http://www.sciencedirect.com/science/journal/03781127
http://dx.doi.org/10.1016/j.foreco.2009.06.005
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2. Methods

We use data from permanent sample plots of Forest Inventory
and Analysis, U.S. Forest Service, for western USA. The plots are
systematically located to sample the vegetation on forested and
non-forested lands (see Alerich et al., 2004; Bechtold and
Patterson, 2005). Plots ordinarily are established with four
subplots, but for our analyses, data from subplots were combined.
We use presence–absence data for aspen from the ca. 118,000
plots. Aspen was recorded as present in 3098 plots, 2.6% of the total
number; 874 of the plots with aspen lie within the Rocky Mountain
Region. Inventory plots ordinarily are re-measured on 10-year
intervals, but we used the original data taken on plot establish-
ment, most of which date to the period of climate normals, 1961–
1990.

The thin plate spline surfaces of Rehfeldt (2006), available at
URL: http://forest.moscowfsl.wsu.edu/climate/, were used to
estimate normalized (1961–1990) monthly means of total pre-
cipitation and average, maximum, and minimum temperature of
each inventory plot. These surfaces, constructed with the software
of Hutchinson (1991, 2000), provide point predictions of climate
from geographic input (latitude, longitude, and elevation). An act
of the Congress of the United States prevents Forest Inventory from
revealing the precise geographic location of their plots. At the
outset of a series of analyses (see Rehfeldt et al., 2006), we had been
permitted access to inventory databases in order to generate
monthly climate normals from actual coordinates. Forest Inven-
tory, however, has made available public locations for their plots
using ‘fuzzy’ coordinates, those for which actual geographic
coordinates have been altered. Forest Inventory does not divulge
the degree of falsification. Point locations in illustrations that
follow employ these fuzzy coordinates.

The analyses employ 34 variables derived from monthly
climate estimates (see Rehfeldt, 2006), 18 of which are derived
directly from the monthly estimates. The derived variables include
simple expressions of average temperature and precipitation (e.g.,
mean annual temperature, mean annual precipitation), tempera-
ture sums (e.g., degree-days >5 8C, degree-days <0 8C), freezing
dates (e.g., date of the last freeze of spring), and expressions of the
balance between temperature and precipitation (e.g., the ratio of
degree-days >5 8C to mean annual precipitation). The remaining
variables were interactions among these eighteen.

2.1. Bioclimate model

Our statistical models are built on the framework of Iverson and
Prasad (1998) and closely parallel to those of Rehfeldt et al. (2006).
We use the Random Forests classification tree (Breiman, 2001) to
predict the presence–absence of aspen from climate variables. The
model thus predicts the realized niche for the contemporary climate,
which is referred to as the climate profile (see Rehfeldt et al., 2006).
The Random Forests algorithm, available in R (R Development Core
Team, 2004; Liaw and Wiener, 2002), constructs a set of regression
or classification trees from an input data set. The trees in their
aggregate are called a forest. The process begins with the drawing of
a bootstrap sample consisting of about 64% of the total number of
observations. This sample is used to build a tree while those omitted,
collectively termed the out-of-bag sample, are used to compute
classification errors. At each node of a tree, a random sample of the
predictor variables is selected, ordinarily equaling the square root of
the number of predictors. Of these, the variable that minimizes the
classification error is selected. Nodes are further split until no more
improvement can be achieved.

Out-of-bag errors are composed of errors of omission (a
prediction of false when true) or errors of commission (a prediction
of true when false) and are calculated as the proportion of the total
number of errors to the total number of observations in the forest.
In making predictions, each tree of each forest provides a ‘vote’
concerning the classification of an observation. Because the error
converges to a limit as the number of trees in the forest becomes
large, overfitting is inconsequential.

For classification trees, Breiman (2001) recommends that the
number of observations within classes be approximately equal.
Because aspen occurs in only 2.6% of the inventory plots, a
sampling protocol was required to satisfy Breiman’s recommenda-
tion. We use the general approach of Rehfeldt et al. (2006) to draw
14 samples from the inventory database. All observations with
aspen were selected for each sample, weighted by a factor of 2, and
fixed in the sample at 40% of the total. Weighting by a factor of 2
allowed twice as many observations with no aspen to be included
in the sample while maintaining presence at 40% and absence at
60% of the total. Each sample, therefore, contained about 15,500
observations, 6196 observations with aspen, and about 9300
observations without aspen.

Observations without aspen were allocated to each sample in
two steps. The first step assured that the most of the observations
without aspen would be the most difficult to separate from those
with aspen. To do this, we defined an 18-variable hypervolume
(sensu Hutchinson, 1958), each dimension of which consisted of an
estimate of aspen’s climatic limits expanded by � 0.1 standard
deviations. Climatic limits were estimated from the mean of all
observations with aspen. The hypervolume contained about 82,000
observations without aspen. From within this hypervolume, 40% of
the total sample (about 6200 observations) was selected at random.
The remaining observations without aspen (20% of the total, 3100
observations) were selected from outside the hypervolume such that
a broad range of climate variation was represented. We did this by
drawing a random sample of 155 observations (1% of the total) from
each of 10 uniform classes subtending each of the first and second
principal components calculated from the 18-variable network for all
observations in the inventory database.

This sampling procedure thus used all observations with aspen,
concentrated the remainder of the sample in those climates for
which separating presence from absence would be the most
difficult, but still represented the full range of variation among the
plots. Weighting permitted a higher proportion of the total
observations to be used in each forest. Fourteen forests were
used so that the probability would be high that all observations
within the hypervolume would be used in at least one forest.

For classification trees, Random Forests provides two statistics
for judging the importance of independent variables, the mean
decrease in accuracy and the mean decrease in the Gini index of
class purity (Breiman and Cutler, 2004). The first relies on an
iterative process of randomly permuting (noising up) a predictor
variable to assess the effect of a variable on the classification error.
The second, also known in ecological research as the Gini–Simpson
index (Sen, 2005), expresses the reduction in node purity
attributable to a variable when it is used to split a node. For
bioclimate modeling, the mean decrease in accuracy tended to
provide Rehfeldt et al. (2006) with superior models and is used
exclusively herein to judge variable importance.

Our analyses consisted of 14 forests of 100 trees, with an
independent sample drawn for each forest. A stepwise procedure
was used to iteratively cull predictors according to an average of
importance values for the 14 forests. The program began by using a
full complement of the 34 climate variables. Out-of-bag errors
were used to select the final model: when errors began increasing
consistently, we assumed that the corresponding model was of
reasonable parsimony. A visual assessment of the fit of the model
was made by comparing predicted distributions of the climate
profile with the two-dimensional range maps of Little (1971),
available as digitized files from USGS (2005).

http://forest.moscowfsl.wsu.edu/climate/


G.E. Rehfeldt et al. / Forest Ecology and Management 258 (2009) 2353–2364 2355
2.2. Mapping predictions

Nearly 6 million pixels of �1 km (0.00838) resolution comprise
the terrestrial portion of our geographic window. Using the
digitized elevations of GLOBE (1999), we estimated the climate of
each pixel from the surfaces of Rehfeldt (2006). The estimates were
then run through the bioclimate model, with each tree of each
forest providing a vote as to whether a pixel fell within aspen’s
climate profile. A pixel was assumed to have a suitable climate
when receiving a majority of favorable votes.

Projections of the contemporary climate profile into future
climate space were made for three General Circulation Models
(GCM) and two scenarios: (1) Canadian Center for Climate
Modelling and Analysis (CCCMA), using the CGCM3 (T63 resolu-
tion) model, SRES A2 and B1 scenarios; (2) Met Office, Hadley
Centre (UKMO), using the HadCM3 model, SRES A2 and B2
scenarios; and (3) Geophysical Fluid Dynamics Laboratory (GFDL),
using the CM2.1 model, SRES A2 and B1 scenarios. Data, their
descriptions, and explanation of the scenarios are available at the
International Panel on Climate Change Data Distribution Center
(http://www.ipcc-data.org/). In general, the SRES A2 scenario
reflects unrestrained carbon emissions while the B1 and B2
scenarios incorporate social and economic restraints; the scenarios
we use should begin diverging by 2030.

GCM output was used to calculate the monthly change in
climate between the normalization period and the decades
surrounding 2030, 2060, and 2090 for each weather station used
in developing the climate surfaces (for details, see Rehfeldt et al.,
2006). Calculation of monthly changes in average, minimum and
maximum temperature used actual values; those for precipitation
used proportions. Downscaling from the relatively coarse grids of
the GCMs to the point locations of the weather stations used a
weighted average of the monthly change in climate calculated for
the GCM cell centers lying within 400 km of a station. The inverse
of the square of the distance from the station to the cell center was
used for weighting. Monthly climate surfaces for average,
minimum, and maximum temperature and precipitation were
then fit anew for each GCM and each scenario. These procedures
thus resulted in a total of 72 new climate surfaces for each month.
The surfaces were then used to project the derived variables for the
future climate of each pixel in our geographic window. Climate
variables for each pixel were run again down the classification
trees of the 14 forests to obtain votes as to the suitability of the
future climate to aspen.

Projections of the climate profile were made for three time
periods, the decades surrounding 2030 (i.e., 2026–2035), 2060, and
2090. In total, therefore, these procedures produced 18 maps (3
GCMs � 3 time periods � 2 scenarios).

2.3. Sudden aspen decline

Projecting the contemporary climate profile into future climate
space allows delineation of areas where aspen should be vulnerable
to the change in climate. Yet, sudden aspen decline has been
observed during specific years and on specific sites, particularly in
the U.S. Forest Service’s Rocky Mountain Region. We illustrate the
utility of the climate profile for assessing sudden aspen decline on
two fronts: (1) examining the 1950–2006 trends in those climate
variables relevant to the aspen profile, and (2) comparing the recent
climate trends for all inventory plots containing aspen in Rocky
Mountain Region to those for areas in which dieback has been
observed. Because the calculation of negative degree-days uses
sums for winter months rather than for the calendar year, the period
1950–2006 contained 56 years of climate records.

On the first front, we assemble for the Rocky Mountain Region
climate data from Earthinfo (2006) for 1950–2006. Data were used
from only those weather stations with a complete set of valid
months (i.e., no more than 10 missing daily observations) for at
least 50 years of the 56-year period. Only 51 stations satisfied these
criteria. These stations, however, were at an average elevation of
1755 m, approximately 800 m lower than that of the 874 inventory
plots containing aspen. To provide assurance that the climate at
locations inhabited by aspen were being represented without bias,
yearly climate estimates using unpublished spline surfaces for
1950–2006 were made for each of the 874 inventory plots
containing aspen in the Rocky Mountain Region. The unpublished
spline surfaces were developed from the same procedures used by
Rehfeldt (2006), contain approximately the same number of
observations, and have comparable fit statistics.

However, for estimating annual climate for inventory plots,
actual geographic coordinates were no longer available. Instead,
we used the fuzzy coordinates to estimate plot climate. Because
actual coordinates had been used to estimate climate normals, a
difference between the mean of a derived variable for the period
1961–1990 based on fuzzy locations and the normal for the same
data point can be viewed as an adjustment factor suitable for
correcting data from fuzzy locations to actual locations. In
justifying this approach, it is important to realize that plot
elevation has not been falsified by Forest Inventory. In mathema-
tical notation, the process by which yearly climates of falsified
locations was adjusted was:

X0i j ¼ Xi j þ ðNi � x̄iÞ

where X is a derived climate variable for plot i in year j; N is the
1961–1990 climate normal for plot i; x̄ is the mean for plot i for
years 1961–1990.

For the second front, the yearly spline surfaces were used to
estimate the climate at 3431 locations in the Rocky Mountain
Region where sudden decline has been observed. Dieback locations
were obtained from digitized files produced from aerial surveys of
2006 (URL: http://www.fs.fed.us/r2/resources/fhm/aerialsurvey/).
According to this survey, the area encompassed by those polygons
in which dieback had occurred ranged in size from a fraction of a
hectare to more than 3000 ha, with a total area of about 72,000 ha.
The geographic coordinates for the center of each polygon were
located and exported from ARCMAP software and the associated
elevation of each was estimated from GLOBE (1999), using a 1 km
grid.

Yearly climate estimates in the Rocky Mountain Region for (1)
inventory plots containing aspen and (2) polygons locating aspen
dieback were run through the bioclimate classification tree. Votes
were used to assess whether the climate in each year had been
favorable or severe for aspen. Because the precise location of
inventory plots was not available for these calculations, plots in
which dieback had occurred could not be removed from the
inventory data. We compare, therefore, votes garnered by locations
where dieback had occurred to those of all locations in the
inventory database containing aspen, even though some of these
locations undoubtedly would have contained aspen trees suffering
dieback.

3. Results

3.1. Bioclimate model

Out-of-bag errors for the 34-variable model averaged 4.3%
across the 14 forests. This error remained relatively constant
throughout the stepwise elimination of variables until 10 variables
remained (Fig. 1). Thereafter, the errors increased slowly as
variables were removed, reaching 4.5% with eight variables, 7.0%
with two, and culminating with 9.7% error with a 1-variable model.

http://www.ipcc-data.org/
http://www.fs.fed.us/r2/resources/fhm/aerialsurvey/


Fig. 1. Out-of-bag errors plotted against the number of independent variables in the

model.
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We chose the 8-variable model as being reasonably parsimonious
while providing buffer against reliance on single variables.

Out-of-bag errors for the 8-variable model were comprised
primarily of the errors of commission, the error that arose from
predicting aspen to be present when absent. When averaged across
the 14 forests, errors of commission averaged 7.5% for the 9300
observations without aspen represented in each forest. Errors of
omission, predicting aspen to be absent when present, averaged
0.15%; on average, the model correctly classified all but ca. 9 of the
6196 aspen observations in each forest. These errors, therefore,
produced out-of bag error of about 4.5% of the 15,500 observations.

We assume that the variable comprising the 1-variable model is
the most important in the aspen climate profile. This variable, the
annual dryness index, is a ratio that reflects the balance between
summer temperatures and annual precipitation (Table 1). This
index was joined in the 2-variable model by a variable reflecting
the periodicity of precipitation, the ratio of summer precipitation
to the annual total. As measured by the mean decrease in accuracy,
the importance of these two variables in the 2-variable model was
nearly identical.

The variable ranked third in importance to the climate profile
was an interaction between summer precipitation and growing
degree-days (Table 1), another variable expressing the balance
between temperature and precipitation. All of the remaining
variables except for the mean maximum temperature in the
warmest month (MMAX) involved interactions of precipitation
with winter temperatures. The most notable of these were the
Table 1
Acronyms, derivation, and ranking of climate variables of relevance to th

Acronym Definition

DD5 Degree-days >5 8C
MAP Mean annual precipitation

ADI Annual dryness index: (DD5)0.5/MAP

GSP April–September precipitation

PRATIO GSP/MAP

GSPDD5 (GSP�DD5)/1000

GSDD5 Degree-days >58 summed between

and the first freeze of autumn

MINDD0 Degree-days <0 8C based on the min

SDI Summer dryness index: (GSDD5)0.5/

SDIMINDD0 SDI�MINDD0

MTCM Mean temperature in coldest month

MTWM Mean temperature in warmest mon

TDIFF Summer–winter temperature differe

GSPTD (GSP�TDIFF)/100

ADIMINDD0 ADI�MINDD0

MMAX Mean maximum temperature in wa

DD5MTCM (DD5�MTCM)/1000
products of the annual dryness index and summer dryness index
with negative degree-days calculated from the minimum tem-
perature.

In the histograms showing the frequency of aspen in each of 100
uniform classes for each of the 8-predictor variables (Fig. 2), the
breadth of the x-axis is relevant only to the distribution of plots
containing aspen. Table 2 provides data that allow these
histograms to be viewed in context of either all lands of western
USA in the inventory database or from just those lands that are
forested. In compiling the statistics for this table, we discarded the
largest and smallest 0.05% of the observations, assuming, as
suggested in Fig. 2, that most of the outliers were within these
percentiles. Table 2 shows, for instance, that the relatively narrow
limits of aspen’s distribution for ADI (Fig. 2), is about one-half of
that for forested lands and one-fifth of that for all lands in western
USA as a whole. Likewise, for the other variables in the climate
profile except PRATIO, the data in Table 2 show that in comparison
to forested and non-forested lands, aspen tends to be absent where
either summers or winters are either dry or warm. Values for
PRATIO (Fig. 2) show that aspen occurs across a broad range of
values but is most frequent where summer and winter precipita-
tion is evenly balanced, that is, PRATIO of 0.4–0.6.

Occurrence of aspen in Fig. 2 is based on frequencies. When
these frequencies are expressed as a proportion of the total number
of plots containing aspen, none of the classes in the histograms
would peak at values higher than 0.15, suggesting that (a) factors
other than climate (e.g., soils, disturbance, succession) also may be
important, and (b) multivariate models are required to accurately
predict occurrence.

3.2. Mapped climate profile

Limitations of using digitized versions of two-dimensional
range maps for verifying predictions from bioclimatic models (see
Rehfeldt et al., 2006) are centered on (1) the coarse resolution of a
range map in comparison to the grids of GLOBE (1999), (2) the
inability to represent altitudinal distributions on two-dimensional
surfaces, and (3) a lack of alignment between the range map and
the digitized elevations used for estimating climate. Nonetheless,
colored pixels in the mapped climate profile (Fig. 3), those
indicating a voting percentage>50%, tend to be in close agreement
with Little’s (1971) range map. This is particularly true for pixels
colored red, those predicted by the bioclimate model of having a
climate suitable for aspen at the highest probabilities.

Inserts within Fig. 3 clearly demonstrate the problems inherent
with using range maps for a visual validation of bioclimate models.
e climate profile of aspen.
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Fig. 2. Histograms for each variable relevant to aspen’s climate profile showing the number of inventory plots containing aspen within each of 100 classes. Acronyms are

defined in Table 1.
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Table 2
Range (minimum and maximum) in values of relevant climate variables (Fig. 2) for

all inventory plots, those that are forested, and those containing aspen for western

USA after deleting the lowest and highest 0.05%. Acronyms are defined in Table 1.

Variable All plots

(n = 117,581a)

Forested plots

(n = 41,873)

Aspen

(n = 3059)

ADI (index) 0.01–0.69 0.01–0.23 0.03–0.16

PRATIO (proportion) 0.11–0.82 0.12–0.76 0.21–0.79

GSPDD5 (index) 121–1196 120–1204 140–793

SDIMINDD0 (index) 13–654 12–498 80–395

GSPTD (index) 6–99 13–99 22–110

ADIMINDD0 (index) 3–455 3–313 32–278

MMAX (8C) 17.3–42.4 17.5–35.8 19.1–32.5

DD5MTCM (index) �24.2–74.8 �16.3–29.1 �13.3 to �0.8

a Number of observations.

Table 3
Percent reduction in area occupied by the contemporary climate profile of aspen

according to three general circulation models, two scenarios, and three time

periods.

Circulation model

and scenario

Perioda

2030 2060 2090

CCCMA_A2 27.3 49.5 77.6

GFDL_A2 41.0 74.1 94.4

UKMO_A2 6.7 54.9 84.3

CCCMA_B1 23.6 39.7 46.2

GFDL_B1 25.5 42.1 49.4

UKMO_B2 12.8 48.1 64.7

CCCMA, Canadian Center for Climate and Modeling; GFDL, Geophysical Fluid

Dynamics Laboratory; UKMO, Met Office, Hadley Centre
a Decade surrounding the date, e.g., 2026–2035
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In these inserts, black dots, despite their fuzzy coordinates,
invariably are closely associated with pixels predicted to have
climates suitable for aspen. Blue dots are the fuzzy locations of
plots having no aspen. Note, however, that a gridded, systematic
pattern of blue dots is apparent, suggesting that the degree of
falsification of their coordinates was slight. The insert on the lower
left shows an area where aspen is rare, a frequency correctly
portrayed by the bioclimate model but not necessarily by the range
map. This same insert also shows plots outside polygons on the
range map that are correctly classified by the model. The other two
inserts in this figure show areas within range map polygons where
the frequency of aspen grades from abundant to rare; again,
correctly portrayed by the model. Because of their accuracy in
predicting presence, bioclimate models can infer abundance as
well as limits of distribution.
Fig. 3. Aspen’s mapped climate profile (yellow and red pixels) in relation to Little’s (1971)

for inserts, black dots, Forest Inventory plots with aspen; blue, without aspen. (For interp

web version of the article.)
Mapped projections of the contemporary climate profile into
the future climate space described by three GCMs for only SRES A2
scenarios (Fig. 4) show that the area occupied by the contemporary
climate profile should shrink drastically during the course of the
century. The impact portrayed by GFDL projections, however, are
the most severe while those of CCCMA are the least. Although
concurrence among GCMs for the decade surrounding 2030 is
remarkably high, differences afterwards eventually would produce
a 77.6% reduction in aspen’s climate profile for CCCMA, 84.3% for
UKMO, and 94.4% for GFDL (Table 3). Reduction in area of the
climate profile for SRES B1 or B2 scenarios would be about 25% less
than for the A2 scenarios after 2030.

The disparate impacts projected by these GCMs stem directly
from precipitation effects. For the A2 scenarios, the GCMs are
remarkably consistent for mean annual temperature, projecting for
digitized range map (lines). Yellow, 50–75% of the votes; red, 75–100% of the votes;

retation of the references to color in this figure legend, the reader is referred to the



Fig. 4. Aspen’s mapped climate profile for the contemporary climate (upper left) and for future climates as depicted for the SRES A2 scenarios and three GCMs in decades

centered on 2030, 2060, and 2090. CCCMA, Canadian Center for Climate Modeling; GFDL, Geophysical Fluid Dynamics Laboratory; UKMO, Met Office, Hadley Centre. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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our geographic window an increase of 1.4–1.8 8C for the decade
surrounding 2030, 3.0–3.4 8C for 2060, and 5.0–5.1 8C by 2090. For
precipitation, however, GFDL projects a change of�10% for the end
of the century while UKMO projects a change of +2% and CCCMA
+6%. Because the balance between temperature and precipitation
is fundamental to aspen’s climate profile, projected impacts are
greatest by far for GFDL (Fig. 4, Table 3).

Despite the obvious differences (Fig. 4), the degree of
concurrence among GCM projections is high, particularly early
in the century (Fig. 5). The projections for all six of the scenarios are
superimposed in Fig. 5, and pixels have been colored according to
the number of scenarios for which the 2030 climate has been
predicted to be within aspen’s climate profile. Illustrating GCM
projections in this manner emphasizes their similarities rather
than differences (Czucz et al., 2009). Of the total number pixels
predicted to have a 2030 climate suitable for aspen, the six
scenarios concurred on 29.1% of them, five concurred on 14.5%,
four on 13.9%, three on 13.7%, and two on 11.2%; 17.1% received
favorable votes from only one scenario.

Not obvious in Fig. 4 are the projected changes in altitude
that accompany the decrease in area of the climate profile. In
U.S. Forest Service’s Rocky Mountain Region, for instance, the
aspen profile would move upwards by about 250 m by 2030,
400 m by 2060, and 750 m by 2090 according to CCCMA,
scenario SRES A2. Altitudinal displacement for the profile would
be somewhat less for UKMO (650 m by 2090) and somewhat
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more for GFDL (about 1000 m by 2090); the B scenarios would
result in an altitudinal displacement of about one-half that of
the A2 scenarios after 2030.

3.3. Climate and sudden aspen decline

Examination of the annual climate between 1950 and 2006 for
variables relevant to aspen’s climate profile revealed patterns in six
variables that correspond with the sudden decline evident in the
Rocky Mountain Region. In Fig. 6, trends for four of these variables
are presented for (1) 51 weather stations from the region and (2)
spline estimates for the 874 inventory plots containing aspen
within the same region. The two variables not considered in the
figure, SDIMINDD0 and ADIMINDD0, exhibited annual trends that
closely paralleled that of ADI.

Fig. 6 shows that weather stations, located about 800 m lower
in elevation than the aspen forests, are, as expected, much warmer
and drier than the sites inhabited by aspen. More importantly, the
annual trends for actual data and spline estimates are remarkably
similar. Linear regressions of weather station means on the spline
estimates for these variables and several additional variables
produced values of R2 that ranged from 0.67 (MMAX) to 0.75 (ADI).
With 55 degrees of freedom, all were statistically significant
(P < .0001). However, the regression coefficients varied from 0.68
for MAP to 1.78 for ADI, suggesting biasness when data from the
closest weather station are used to characterize the climate of a
forested site.

Yearly trends (Fig. 6) show that 2002 had the highest summer
temperatures, moderately warm winters, the lowest precipitation,
and the most extreme temperature:precipitation indices for the 56-
year period. Because these variables are relevant to aspen’s climate
profile, their trends alone would suggest that the climate in 2002
Fig. 5. Aspen’s mapped climate profiles for the decade surrounding 2030 superimposed

concur. (For interpretation of the references to color in this figure legend, the reader i
was more severe for aspen than in any other year. Sudden aspen
decline became apparent to land managers in the Rocky Mountain
Region in 2004 and became obvious in aerial surveys in 2005
(Worrall et al., 2008). Symptoms of sudden decline, therefore, were
not obvious until two years following the severe weather of 2002.

Votes cast by the bioclimate classification tree are presented in
Fig. 7 as 4-year running means. These means show general trends
by eliminating much of the year-to-year variation. In this figure,
mean values are plotted according to the first year in the 4-year
interval. The figure shows that the suitability of the climate for
aspen followed similar patterns for (1) inventory plots containing
aspen and (2) locations in which dieback was observed in the aerial
survey of 2006. Trends for all inventory plots containing aspen
show two periods when the climate was particularly severe: 1953–
1956 and 2000–2003. Trends for those locations exhibiting dieback
in 2006, however, suggest that there were four severe periods, with
that of the mid to late 1950s being the most severe and the most
prolonged. Both trends, but particularly that for all aspen plots, are
consistent with the extreme climates of Fig. 6. Also obvious in Fig. 7
is that whenever the percentage of favorable votes was low,
locations where dieback recently has occurred received the fewest
votes. This suggests that the sites where sudden decline is
occurring are on the fringe of aspen’s realized climate niche and,
consequently, are and have been the most vulnerable.

This vulnerability was addressed further by updating the
climate at locations now exhibiting sudden decline for future
climates expected by the three GCMs and both scenarios. Despite
using a 1 km grid to estimate elevations of sites exhibiting dieback
today, the classification tree predicted that only 6.3% of these sites
should lie outside the contemporary climate profile (Fig. 8).
However, when the 2030 climates of these sites were run through
the classification tree, on average, 58% of the sites now exhibiting
for three GCMs and two scenarios. Coloring indicates the number of scenarios that

s referred to the web version of the article.)



Fig. 6. Trends in annual climate for four variables relevant to aspen’s climate profile. Solid lines are the average of data from 51 weather stations located within U.S. Forest

Service’s Rocky Mountain Region; hash lines are means of spline estimates for 874 inventory plots containing aspen from the same region. Acronyms are keyed to Table 1.
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dieback in the Rocky Mountain Region were projected to lie
outside aspen’s climate profile. Although this percentage varied
from 41% to 75% depending on GCM and scenario, the reduction is
far greater than that expected for aspen throughout its USA
distribution (Table 3). By 2060, 76% of the sites now exhibiting
sudden decline are projected to lie outside aspen’s climate profile.
These statistics along with the maps of Fig. 8 imply that dieback
may be a primary agent responsible for adjusting aspen’s
distribution for the change in climate; indeed, most of the dieback
locations are within the portion of the aspen distribution expected
to be vacated by 2060.
Fig. 7. Annual votes (percent of the total) in favor of the climate being suitable for

aspen in U.S. Forest Service’s Rocky Mountain Region. Thick gray line, average votes

of 874 inventory plots containing aspen; black line with dots, average for 3431

polygons identified on the 2006 aerial survey as having sudden aspen decline.

Fig. 8. Aspen’s mapped climate profile for the Rocky Mountain Region, USFS for the

contemporary climate (purple), the predicted according to output from the A2

scenario of the Geophysical Fluid Dynamics Laboratory for the decade surrounding

2060 (red), and locations identified with sudden aspen dieback (white dots) on

2006 aerial surveys in relation to Little’s (1971) range map (polygons outlined in

black). (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of the article.)



Table 4
Overall 56-year means and 4-year running means for two periods for climate variables relevant to aspen’s climate profile. Means are for the 874 plots

containing aspen within the Forest Inventory database for the U.S. Forest Service’s Rocky Mountain Region. Acronyms are defined in Table 1.

Variable Years

1953–1956 2000–2003 1951–2006

DD5 (8C) 1116 1247 1122

MAP (mm) 432 451 509

GSP (mm) 248 252 295

MINDD0 (8C) 2597 2537 2626

ADI (index) 0.077 0.079 0.067

PRATIO (proportion) 0.57 0.56 0.58

GSPDD5 (index) 277 315 329

SDIMINDD0 (index) 256 270 228

GSPTD (index) 54.8 62.1 69.6

ADIMINDD0 (index) 202 202 176

MMAX (8C) 24.4 26.5 24.5

DD5MTCM (index) �8.0 �10.0 �9.3

Bold face type indicates an extreme value for the 56-year period.
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In examining trends in climate variables relevant to aspen’s
climate profile, 4-year running means showed that for six of the
eight variables, the climate was extreme either during 1953–1956
or 2000–2003, the two periods in which the climate was the most
severe for aspen in general. These two periods, moreover, had
much similar climates, although the summers of 1953–1956 were
somewhat cooler than those of 2000–2003 (Table 4). However,
outbreaks of aspen dieback during the decade of 1950 are not of
general knowledge within the forest health lore (J.A. Worrall, U.S.
Forest Service, Gunnison, Colorado; personal communication, D.L.
Bartos, Rocky Mountain Experiment Station, U.S. Forest Service,
Logan, Utah, personal communication), although archived reports
of individual forests and districts have not been systematically
searched.

4. Discussion

4.1. Climate profile

.
The classification tree produced out-of-bag errors that averaged

less than 5% of the 15,000 observations comprising each forest. Most
of this error consisted of the errors of commission that accrue from
predicting that the climate would be suitable when aspen was not
present. A concomitant lack of errors of omission resulted largely
from the composition of the sample. By weighting in our sample
observations containing aspen by a factor of 2, we forced the errors of
omission to be minimized while doubling the number of observa-
tions in the sample with no aspen. While many ecologically sound
reasons exist to explain errors of commission (e.g., substrate,
disturbance history, succession), predicting the absence of a species
when it is present most likely reflects modeling errors. Conse-
quently, structuring the out-of-bag errors to reflect primarily the
errors of commission is intuitively appealing.

In drawing a sample of observations for which aspen was
absent, we used a multivariate hypervolume, expanded somewhat
beyond the limit of aspen’s climatic distribution, to concentrate
observations into the range of climates for which separating
presence from absence would be the most difficult. Observations
within this hypervolume were then re-sampled intensively by
running 14 independent forests. We also assured that a small
number of observations in the sample would represent the full
range of climatic variation encompassed by the observations
without aspen. The result was a model with little error.

Mapped predictions of the contemporary climate profile show
that our predictions generally lie within the polygons of Little’s
(1971) range map (Fig. 3). In comparing the predicted distribution
with the range map, it is worthwhile to note that about 75% of the
aspen in western USA occurs in Colorado and Utah (Bartos, 2001),
the area receiving the high proportion of red-colored pixels (>75%
votes) in Fig. 3. The bioclimate model, therefore, was particularly
effective where aspen is prevalent.

With errors of omission approaching zero, the bioclimate model
was essentially perfect in correctly predicting the occurrence of
aspen when it was present. Fig. 3, moreover, shows unequivocally
that species are neither uniformly distributed within nor equally
abundant among polygons delineated on a range map. Unlike the
two-dimensional range map, abundance indeed is reflected in
predictions from the bioclimate model. In addition, dieback
locations taken from aerial surveys are a collection of data points
containing aspen that are completely independent of the inventory
data. Fig. 8, therefore, provides outstanding verification of the
bioclimatic model: 93.7% of the locations exhibiting dieback fall on
pixels colored purple, that is, those predicted to have a climate
suitable for aspen. Discrepancies between data points, the
predicted profile, and the range map typically result from
inaccuracies in the range map. While the two-dimensional range
maps have satisfactorily served the forestry profession for many
decades, inventory databases and bioclimate models are ideal
resources for their modernization.

4.2. Relevant variables

We chose an 8-variable model to describe aspen’s climate profile.
Although the model is correlative, the Random Forests algorithm
nonetheless is useful for sorting through a large number of
independent variables to select those most important in predicting
responses (Breiman, 2001; Rehfeldt et al., 2008). Our results show
that the most important climate variable for predicting the presence
of aspen in western USA was an annual dryness index, calculated as a
simple ratio of growing-degree-days (58 base) to annual precipita-
tion. Of the remaining variables, two also reflected an interaction
between temperature and precipitation (Table 1). These results
mesh closely with those of Hogg (1994, 1997) who demonstrated
that the difference between annual precipitation and potential
evaporation was closely associated with the limits of distribution of
aspen in the prairie provinces of Canada. Consequently, Hogg’s
conclusions seem applicable to the species in general: limits of
distribution at the xeric fringe are controlled primarily by the
balance between temperature and precipitation. The same conclu-
sions, in fact, are applicable to twelve co-occurring species of Rocky
Mountain conifers (Rehfeldt et al., 2008).

The aspen climate profile also contained four interactions
involving winter temperatures and either dryness indices or
summer temperatures. Obviously, winter temperatures would be
primary factors controlling distributions on the cold front where,
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in western USA, the aspen is supplanted by alpine and tundra
vegetation. Our models suggest, however, that even here, moisture
stress may have a role, according perhaps to the well known adage
that winters are most severe when trees enter winter with
moisture deficits (Levit, 1972). In fact, the role of the second-
ranked variable in the aspen profile, PRATIO (Table 1, Fig. 2) may
also be related to regulation of moisture stress: evenly distributed
precipitation may act to ameliorate unfavorable balances between
temperature and precipitation.

4.3. Potential impacts of global warming

As illustrated for the montane and subalpine forests of western
USA and for several of their constituent species (Rehfeldt et al.,
2006), the area occupied by aspen’s contemporary climate profile
is expected to decline greatly by the end of the century (Table 3)
while moving upwards in altitude by as much as 1000 m. The
amount of decline projected, however, depends on the GCM and
scenario (Table 3; Fig. 4). While these results are remarkably
consistent with bioclimate models of aspen for northeastern USA
(Iverson et al., 2008), this variation frequently is used to question
the advisability of invoking management strategies that would
anticipate the change in climate (e.g., Rice and Emery, 2003).

Despite variation among GCM projections, Fig. 4 nonetheless
illustrates some remarkable consistencies for the A2 projections.
All GCMs, for instance, describe the aspen profile eventually
shifting toward the high elevations, especially those of the
Rocky Mountain Region. More importantly, all tend to agree on
the geographic location of the profile early in the century, with
the divergence occurring later. When projections from the six
scenarios considered herein are superimposed (Fig. 5) for the
decade surrounding 2030, there is unanimous agreement that
the future climate will be suited to aspen for 29% of the
cumulative area from all scenarios. Indeed, a majority (three or
more) of the scenarios are in agreement for all but 18% of
cumulative area. This concurrence among the GCMs can be used
to design management strategies to target future climates with
the proper species and seed sources (see, for instance,
Tchebakova et al., 2005; Rehfeldt, 2004) for those areas
projected by consensus to lie within the climate profile. For
such areas, management of aspen can be undertaken with a
relatively high probability of success.

In considering management options, one must be aware that
regression models like ours project the contemporary climate
profile. To the extent that these projections reflect future
distributions (for discussion, see Pearson and Dawson, 2003)
depends, first, on rates of migration as aspen attempts to track the
climate for which it is physiologically attuned. Migration rates in
aspen, however, are problematic. Most aspen reproduction is
clonal, with reproduction from seeds generally considered to be
rare (Mueggler, 1988; Bartos, 2001). The contemporary profile,
moreover, is determined in part by competitive interactions
among species. In novel climates (see Williams et al., 2007),
competitive interactions are expected to change (see Ackerly,
2003; Jackson and Overpeck, 2000). In addition, as a seral species,
aspen’s occurrence depends on the frequency of disturbance.
Consequently, the future distribution of aspen not only will depend
on the future distribution of the contemporary profile, migration
rates, and disturbance regimes, but also on the distribution of those
novel climates embracing aspen’s fundamental niche. Fig. 4
suggests that the rate at which aspen’s climate profile would
shift across the landscape would be relatively rapid. This rapid shift
coupled with the contingencies of disturbance, migration, and
competition, implies that a prolonged period would be required for
aspen’s distribution to regain a semblance of equilibrium with the
climate.
4.4. Toward an understanding of climate–dieback relationships

The climate model that we use is not yet capable of adjusting
predictions for microtopographic effects (e.g., aspect, soil depth,
slope position). This means that making predictions at a resolution
finer than the 1 km grid that we used would lend a false precision
to the estimates. Nonetheless, aspen dieback is related to both
slope and aspect (Worrall et al., 2008). Our results, therefore, can
reflect only coarse–scale relationships between climate and
dieback rather than the precise site-specific treatment a thorough
analysis would require.

Despite these limitations, we used the 8-variable climate profile
to assess the relationship between climate during a 56-year period
(1951–2006) and the occurrence of sudden aspen decline, first
observed in 2004 and becoming prominent in aerial surveys in 2005.
Weather data show that in 2002, four of the eight variables in the
profile reached extreme values for the 56-year period. Using votes
generated from the bioclimate model to judge the suitability of the
climate for aspen, we identify two 4-year periods in which the
climate was particularly adverse. Although the first, 1953–1956, is
not generally remembered as a period of widespread dieback, the
second, 2000–2003, immediately preceded the recent infirmity.
Indeed, Hogg et al. (2005) also document a major collapse in aspen
productivity from the droughts of 2001–2003 in western Canada.

Aspen dieback became noticeable two years following the
adverse climate of 2002 and one year after the adverse period of
2000–2003. A lag of two years also corresponds to the 2000–2001
sudden dieback in eastern Canada (Candau et al., 2002). We show,
moreover, despite the inability to perform site-specific climate
analyses, when the general climate was adverse for aspen, it
tended to be slightly more adverse at locations where dieback had
occurred recently than for a sample of all sites containing aspen
(Fig. 7). Nonetheless, the area afflicted with aspen dieback
continued to increase through 2006 (Worrall et al., 2008) and
even in 2007 (J.A. Worrall, U.S. Forest Service, Gunnison, Colorado,
personal communication), several years after the adverse climate
of 2000–2003 ameliorated (Figs. 6 and 7). If the adverse climate of
2000–2003 provided the stimulus, the period of decline lasted at
least four years following the stimulus. This lag between cause and
effect is ripe for physiological research.

Although not conclusive, we believe our results to be
compelling: the incidence of aspen dieback probably stemmed
from adverse climates of 2000–2003, a period centering on 2002
during which several variables relevant to aspen’s climate profile
were at extreme values. Because our results support those of Hogg
(1994, 1997) to implicate moisture stresses as limiting aspen’s
distribution on the xeric fringe, and because grasslands-shrub and
woodland communities are expected to expand at the expense of
the montane and subalpine conifer communities of western USA as
a result of global warming (see Rehfeldt et al., 2006), our results
further support the concerns already voiced (Hogg and Hurdle,
1995; Hogg et al., 2002) on the ability of aspen to adjust to climates
of the future. We calculate that for western USA, aspen’s
contemporary climate profile should shrink by 10–40% by 2030,
depending on the GCM and scenario. Even though high resolution
(e.g., 30 m) analyses are not yet feasible, we nonetheless estimate
that aspen’s climate profile should vacate about 58% of area in
which dieback is now apparent. Aspen, in fact, may be a prime
indicator of the impacts of a changing climate on forest growth and
productivity as the balance between temperature and precipita-
tion becomes less and less favorable.
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